
Robotics Lab
Chand T. John

First Bytes & Code Longhorn
June 2019

1. Log into your account in the computer lab.

2. Click the 9 white dots at the bottom left corner
of the screen.

3. Type terminal in the search box at the top.

4. Click on the icon labeled Terminal.

5. In the window that pops up, type
/lusr/bin/pycharm and press Enter.

6. Wait for the app called PyCharm Community
Edition to launch.

You might see a bunch of WARNINGs here.
That’s okay! Just ignore them.

7. Accept the license agreement if it asks you.

8. It doesn’t matter whether you choose to send
usage statistics or not. Just pick a choice. I
prefer not to send usage statistics.

9. Choose + Create New Project.

10. A window will appear that allows you to
select a folder where you’d like to store files for
the robotics program you’ll soon create.

11. Choose a folder name, for example, MyRobotics,
and click the Create at the bottom right.

12. Click the Close button on the Tip of the Day
pop-up window.

13. Go to the File menu and choose Settings...

14. Click the little triangle to the left of
Project: MyRobotics (or whatever you named your project)

15. In the expanded menu, choose
Project Interpreter.

16. Click the + sign at the top right.

17. Type robopy into the search box.

18. Select robopy in the list if it isn’t highlighted
already.

19. Click Install Package.

20. A notification should pop up in the lower right
once the robopy package has been installed.

21. Now type numpy into the search box.

22. Select numpy if it isn’t highlighted already.

23. Click Install Package.

24. A notification should pop up indicating that
the numpy package was installed successfully.

25. Type vtk into the search box.

26. Select vtk if it isn’t highlighted already.

27. Click Install Package.

28. A notification should pop up indicating that
the vtk package was installed successfully.

29. Close the Available Packages window.

30. Click OK to close the Settings window.

31. Right-click the name of your project under
the Project panel.

RIGHT
CLICK!

32. Hover over “New” and choose “Python file”.
A little window will appear.

33. Type Main and click OK.

34. Type this code into the Main.py window.

Make sure you typed in the program EXACTLY as shown. If the
indentation isn’t the same, or if even a single punctuation mark
is out of place or missing, the program probably won’t work!

Computers are really, really picky. They do EXACTLY what you
say, and they don’t understand what you really meant for them
to do.

If something doesn’t work in the next step, it’s probably because
there is a typo in your program somewhere. Don’t worry, it
happens to all of us. We’re humans, not robots. We humans
make mistakes, but we’re also creative, and that’s all part of
what makes humankind fascinating.

35. It’s time to run your first robotics program!
In the Run menu, choose Run...

36. In the little window that pops up, choose
Main and Run…

37. Watch the robot move as your program runs!

38. When the robot stops moving (or before that,
if you’re in a hurry), close the window to stop the
program.

39. Run your program again, but this time a
faster way: click the Play button at the
top right.
From now on,
you can run
your program
this way, or by
typing
SHIFT+F10.

40. Click and drag the corners of the robot
window to make it bigger.

41. Right-click and drag the mouse pointer inside
the robot window to zoom in and out.

42. Click with the middle mouse button (or
SHIFT+left-click) and drag the mouse pointer
inside the robot window to slide the robot around.

43. Click and drag the mouse around inside the
robot window to rotate the robot in 3D.

44. In the Project panel, click the little triangles to expand venv,
then lib, then python3.6, then site-packages, then robopy,
and finally, base.
Double-click
model.py to open it.

45. Examine the code in this file that lists the
colors of the robot’s links.

46. There are lots of other colors we could use.
https://vtk.org/Wiki/VTK/Examples/Python/Visualization/NamedColorPatches

https://vtk.org/Wiki/VTK/Examples/Python/Visualization/NamedColorPatches

47. So, change the colors to ones you like!
For example:

Again, remember to keep all the quotes and other punctuation as they were. If any punctuation is missing
or out of place, the program might not run anymore! The computer just isn’t intelligent enough to know
what you mean unless you type in everything just right!

48. Then run your program again...
(or SHIFT+F10)

49. And enjoy the fancy new colors of your robot!

50. You may now close model.py if you’d like.
Click the little ‘x’

51. Now, double-click serial_link.py to open it.

52. Scroll down to where it says def animate(...):

53. To get the program to start with a better view
of the robot, add these lines of code:

Between the
AddObserver
and animate()
lines

54. Run the program again.
(or SHIFT+F10)

55. Watch the robot move from the new viewpoint.

TIP: Right-click and
drag the mouse inside
this window to get a
good close-up view of
the robot.

Now, let’s talk a bit about the robot’s structure.

The robot’s links
This robot has several links (parts that can move
separately from each other).

In this robot, each link has a unique color.

Each of these is a link.

The robot’s joints
A joint is what connects two links together.

The links rotate about the joints to which they’re
connected.

This robot has six joints, labeled J1, J2, J3, J4,
J5, and J6 in the diagram to the left.

J1
J2

J3
(behind)

J4

J5 J6

The robot’s joint angles
We can describe the robot’s position by listing
the angles by which each joint of the robot is
rotated.

I know that doesn’t make much sense, but the
next several slides will show you what I mean.

J1
J2

J3
(behind)

J4

J5 J6

J1

J1 at 0o
rotation

J1 at +45o
rotation

J2

J2 at 0o
rotation

J2 at +45o
rotation

J3

J3 at 0o
rotation

J3 at +45o
rotation

J4

J4 at 0o
rotation

J4 at
+45o
rotation

J5

J5 at 0o
rotation

J5 at +45o
rotation

J6

J6 at 0o
rotation

J6 at +45o
rotation

Joint angles to describe the robot’s pose

q1

q2

q3

q4

q5 q6

We can describe the robot’s current pose using its
joint angles.

For example, in the image to the left, all 6 joints are
at 0o rotation. If we use the variable q1 to represent
the angle by which J1 is rotated, q2 to represent the
angle by which J2 is rotated, and so on, then we
would say that in the image to the left, the robot’s
pose is:
(q1 = 0o, q2 = 0o, q3 = 0o, q4 = 0o, q5 = 0o, q6 = 0o).

Joint angles to describe the robot’s pose

J1 at +45o
rotation

In this image, all joints are at 0o rotation except for J1,
which is at +45o rotation. The robot’s pose is:
(q1 = +45o, q2 = 0o, q3 = 0o, q4 = 0o, q5 = 0o, q6 = 0o).

Joint angles to describe the robot’s pose

J2 at +45o
rotation

In this image, all joints are at 0o rotation except for J2,
which is at +45o rotation. The robot’s pose is:
(q1 = 0o, q2 = +45o, q3 = 0o, q4 = 0o, q5 = 0o, q6 = 0o).

Making the robot move involves nothing more
than telling it to follow a sequence of poses!

(q1 = 0o, q2 = 0o, q3 = 0o, q4 = 0o, q5 = 0o, q6 = 0o)

(q1 = 0.01o, q2 = 0.02o, q3 = 0o, q4 = 0o, q5 = 0o, q6 = 0.03o)

(q1 = 0.02o, q2 = 0.04o, q3 = 0o, q4 = 0o, q5 = 0o, q6 = 0.06o)

(q1 = 0.03o, q2 = 0.06o, q3 = 0o, q4 = 0o, q5 = 0o, q6 = 0.09o)

….

In fact, that’s what your program does!

Your program creates sequences of joint angles:

Make a list, a, of 500 evenly spaced
numbers between +1o and -180o.

Make a list, b, of 500 evenly spaced
numbers between +1o and +180o.

Make a list, c, of 500 evenly spaced
numbers between +1o and +90o.

Make a list, d, of 500 evenly spaced
numbers between +1o and +450o.

Make a list, e, of 500 zeros (0o).

Your program creates sequences of joint angles:

Carry the joint J1 through the angles
in d. Carry J2 through the angles in
b. Carry J3 through the angles in a,
etc.

Your program creates sequences of joint angles:

Carry the joint J1 through the angles
in d. Carry J2 through the angles in
b. Carry J3 through the angles in a,
etc.

56. Close the robot window if you haven’t already.

57. Change your program to make the robot
stand completely still in its zero pose (where all
joint angles are at 0o rotation).

Change this to:

zeros = np.asmatrix(np.zeros((500, 1)))
q1 = zeros
q2 = zeros
q3 = zeros
q4 = zeros
q5 = zeros
q6 = zeros
f = np.concatenate((q1, q2, q3, q4, q5, q6), axis=1)

Run the program to see if it worked!
Then close the robot window to stop
the program.

58. Make a program that makes the robot wave “Hi.”

Run the program to see if it worked!
Then close the robot window to stop the program.

Change this to:

wave_right = np.asmatrix(np.linspace(-45, 45, 25))
wave_left = np.asmatrix(np.linspace(45, -45, 25))
wave = np.concatenate((wave_right, wave_left), axis=1)
wave_2x = np.concatenate((wave, wave), axis=1)
wave_4x = np.concatenate((wave_2x, wave_2x), axis=1)
q5 = np.transpose(np.concatenate((wave_4x, wave_4x, wave_2x), axis=1))

zeros = np.asmatrix(np.zeros((500, 1)))
q1 = zeros
q2 = zeros
q3 = zeros
q4 = zeros
q5 = zeros
q6 = zeros
f = np.concatenate((q1, q2, q3, q4, q5, q6), axis=1)

59. Make a program that makes the robot spin its
gripper around and around.

Run the program to see if it worked!
Then close the robot window to stop the program.

Change this to:

spin = np.asmatrix(np.linspace(0, 360, 25))
spin_twice = np.concatenate((spin, spin), axis=1)
spin_4x = np.concatenate((spin_twice, spin_twice), axis=1)
spin_8x = np.concatenate((spin_4x, spin_4x), axis=1)
q6 = np.transpose(np.concatenate((spin_8x, spin_8x, spin_4x), axis=1))

zeros = np.asmatrix(np.zeros((500, 1)))
q1 = zeros
q2 = zeros
q3 = zeros
q4 = zeros
q5 = zeros
q6 = zeros
f = np.concatenate((q1, q2, q3, q4, q5, q6), axis=1)

60. Make a program that makes the robot spin
around, pointing in various directions. This is
reminiscent of Oprah Winfrey’s famous quote, “You
get a car! You get a car! Everybody gets a car!”

Run the program to see if it worked!
Then close the robot window to stop the program.

Change this to:

turn = np.asmatrix(np.linspace(0, 360, 200))
half_turn = np.asmatrix(np.linspace(0, 180, 100))
q1 = np.transpose(np.concatenate((turn, turn, half_turn), axis=1))

point_down = np.asmatrix(np.linspace(0, -90, 25))
point_up = np.asmatrix(np.linspace(-90, 0, 25))
point_cycle = np.concatenate((point_down, point_up), axis=1)
point_2x = np.concatenate((point_cycle, point_cycle), axis=1)
point_4x = np.concatenate((point_2x, point_2x), axis=1)
q3 = np.transpose(np.concatenate((point_4x, point_4x, point_2x), axis=1))

zeros = np.asmatrix(np.zeros((500, 1)))
q1 = zeros
q2 = zeros
q3 = zeros
q4 = zeros
q5 = zeros
q6 = zeros
f = np.concatenate((q1, q2, q3, q4, q5, q6), axis=1)

Try coming up with your own robot movements!

Can you make the robot dance?

Can you make it do a softball pitch?

