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What 1s an A-spline?

* “Algebraic spline”

* Implicit polynomial curve f(x, y) =0 1n
compact domain.

* We’ll focus on planar, triangular A-splines.



Motivation

Quickly draw curves and surfaces
Implicit form easy to derive, manipulate
Implicit form hard to render

Until I show you what I got...



The Problem

* (G1ven description of image A4

* Find:
— Initial set 4,

— Function S

quickly

» Such that 4y, S(4,), S 2(4y), ... 4.



The Solution: Subdivision

 Start with A, = a “control polygon™

* Subdivision function S splits polygons into
subpolygons.

* Define S so that convergence 1s fast.



What can we subdivide?

Polynomial Functions f(x)

Parametric Polynomials (x(), y(¢))

Parametric Rationals (u(¢)/w(?), v(¢)/w(t))

Implicit Polynomials f(x, y) = 0



Polynomial Functions

* Want to graph f(x) = x2 over [0, 1]
* We’ll use subdivision.

* de Casteljau Algorithm, Bézier curve



Polynomial Function Subdivision
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Polynomial Function Subdivision
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Polynomial Function Subdivision
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Complexity of Subdivision

* O(2~7d 2) where:
* Subdivision 1s iterated N times

* Curve has degree d



Parametric Polynomials
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Parametric Rationals

* Projection of a polynomial curve in R3

* Subdivision algorithm: Subdivide
polynomial curve in R3 and project down to
R?2 (Rational de Casteljau Algorithm)



How can we describe rationals?
* Rational parametric form
— (u(t)/w(t), v(t)/w(t)), where u, v, w polynomials

* Rational implicit form
— f(x, y) = 0, where f polynomial



Parametric vs. Implicit

* Implicit form
— Hard, slow to render

— Easy to compute with (offset, intersection)

* Parametric form
— Easy, fast to render

— Harder to compute with

* Rationals: both forms, both advantages



Algebraic Plane Curves

Implicit polynomial f(x, y) =0
Want to subdivide algebraic plane curves.
How?

Idea: find rational parameterization!



Rational Parameterization

Not all algebraic curves are rational.

How do we tell if a given curve 1s rational?

Cayley-Riemann Theorem:

— Genus = 0 © curve 1s rational

Compute genus: 1f genus = 0, 1t 1s rational!



Rational Parameterization

* So, given a rational algebraic curve:

* Find rational parameterization with pencil

of lines o (=1

LN

=0

t=-1/2



Complexity of Parameterization
* O (dslogid + d 2T(d?))

* T(d)=0(d3logzd + d2log d log(1/¢))

* 1(d) 1s the time to solve one-variable
implicit polynomial equation of degree d
with precision &



We 1gnored the 1rrational ones!

* Let’s find a more general technique.

* Planar, triangular A-splines:

— Algebraic plane curves
— Restricted to a triangle AP, P,P;

— Curve passes through P, and P,



Convex A-Splines

An A-spline 1s convex 1f 1t has no inflection
points within its triangle.



Subdividing Convex A-Splines

Drop a line
P 3




Subdividing Convex A-Splines

Compute the tangent
3




Subdividing Convex A-Splines

We have two new triangles!
One step of subdivision i1s complete!

P,

Repeat to subdivide more.



Subdividing A-Splines

* How would we subdivide A-splines which
are not convex?

* How about:
— Divide A-spline 1nto convex pieces

— Subdivide each piece!



Subdividing A-Splines

* How do we divide an A-spline into convex
pieces?

* Find the !



Finding Inflection Points

* Compute Hessian:

S Sy Sz
H(x, y) = | JfuSwte| =0

VEVENE

* Solve f(x,y)=H(x,y)=0

* Theorem:
— solutions = {inflection points, singularities}



Finding Inflection Points

* Compute singularities:
S, y) = 1%, ) =f(x, y) = 0

* Subtract singularities from previous
solution:

{inflections, singularities} — {singularities} = {inflections}!
* Thus we can subdivide all/ A-splines!
* O (27vdslogdd + 2Nd2T(d) + 1(d 2))



Further Study: A-Patches

* How about surfaces?

* A-patches (algebraic patches):
— f(x, ¥, z) = 0 1n compact domain

— Surface of revolution subdivision 1s already
implemented in GANITH

— Sweeping, lofting A-splines 1s next



Further Study: Control Fractals
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