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Abstract

In this report we describe known subdivision algorithms for algebraic
splines, brainstorm approaches for more finding more efficient subdivi-
sion algorithms, and briefly introduce algebraic surface patches, for which
efficient subdivision algorithms will likely be more difficult to derive.

1 Introduction

Algebraic curves and surfaces are used extensively in computer graph-
ics visualization. Images are often comprised of these entities be-
cause they are easy to describe and manipulate. Low-degree alge-
braic curves and surfaces are also efficient to render. However, as
the degree of an algebraic curve or surface increases, the rendering
time increases substantially, using currently known algorithms. In
this report we survey some of the currently known techniques of ren-
dering these objects and attempt to describe new approaches which
may lead to better rendering algorithms.

All of the rendering algorithms we will look at will be based on
the concept of subdivision. Subdivision is based on the idea that for
any curve or surface, there is some iterative process which converges
quickly to that curve or surface. Usually one step of this iterative
process will contain some form of “subdividing” the curve or surface
into pieces. So a subdivision algorithm is really just a recursive
algorithm which, when applied iteratively to some simple initial set
of points, will converge to the desired curve or surface. Ideally
a small number of iterations or computations would be needed to
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render a curve or surface by subdivision.
Efficient subdivision algorithms are known for graphs of rational

functions and rationally parameterized curves and surfaces. Also
these algorithms can be extended to efficiently subdivide piecewise
rational curves and surfaces. However, for implicit curves and sur-
faces, a direct, efficient subdivision method is not known. We wish
to develop such a subdivision algorithm. For simplicity we restrict
our attention to algebraic splines (curves) and patches (surfaces),
where the implicit equations contain only polynomial terms.

2 What is Subdivision?

Consider a two-dimensional surface A sitting in three-dimensional
space. Suppose that we wish to render an image of A. We attempt to
accomplish this task by finding a small simple set A0 and a function
S which define a sequence

A0, A1 = S(A0), A2 = S(A1), · · ·

such that
lim
n→∞

An = A.

We wish for the sequence {Ai} to converge quickly to A, i.e., we
would like AN to be visually indistinguishable from A where N is
small.

3 What Can We Subdivide (Efficiently)?

Efficient subdivision algorithms are known for many special classes
of curves and surfaces. Graphs of polynomial functions, paramet-
ric polynomial curves, piecewise parametric polynomials, rational
parametric polynomials, and piecewise parametric rationals form a
hierarchy of classes of curves for which a common subdivision tech-
nique exists.

Fast subdivision algorithms also exist for the analogous surfaces:
graphs of bivariate rational functions, and parametric and piecewise
parametric rational surfaces. We describe subdivision algorithms
for rational curves and surfaces below.

Efficient subdivision algorithms are known for quadratic and cu-
bic algebraic curves, as well as tetrahedral and prism patches [10].
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But for general algebraic curves and surfaces, efficient subdivision
methods are not known.

3.1 Subdivision of Rational Curves

Assume we are given a rational plane curve represented by two ra-
tional functions x(t) and y(t), where t ∈ [0, 1]. We can find control
points P0, . . . , Pn ∈ R2 and weights w0, . . . , wn ∈ R such that

P (t) =

∑n
i=0wiPiB

n
i (t)∑n

i=0wiBn
i (t)

parameterizes the curve, where n is the degree of the largest expo-
nent of t in x(t) or y(t) and

Bn
i (t) =

n!

i!(n− i)!
ti(1− t)n−i, i = 0, . . . , n.

Here we have represented the curve as a rational Bézier curve [12].
Define

P r
i (t) = (1− t)w

r−1
i (t)

wr
i (t)

P r−1
i (t) + t

wr−1
i+1 (t)

wr
i (t)

P r−1
i+1 (t)

and
wr

i (t) = (1− t)wr−1
i (t) + twr−1

i+1 (t),

where r = 1, . . . , n, i = 0, . . . , n− r, and P 0
i (t) = Pi. We may sub-

divide the curve P (t) into two curves P ([0, u]) and P ([u, 1]) where
0 < u < 1. P ([0, u]) has control points P i

0(u) and weights wi
0(u)

for all i = 0, . . . , n. Similarly P ([u, 1]) has control points P i
n−i(u)

and weights wi
n−i(u). This process of subdivision may be iterated to

render the target curve efficiently and accurately. For rational space
curves given by x(t), y(t), and z(t), the same technique works.

3.2 Subdivision of Rational Surfaces

Suppose we are given a rational surface specified by

(x(s, t), y(s, t), z(s, t)),

where x, y, and z are rational in s, t ∈ [0, 1]. Then we can com-
pute a control net {Pij}i,j=m,n

i,j=0 and weights {wij}i,j=m,n
i,j=0 so that we
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parameterize the rational Bézier surface by

P (s, t) =

∑n
i=0

∑n
j=0wijPijB

m
i (s)Bn

j (t)∑n
i=0

∑n
j=0wijBm

i (s)Bn
j (t)

,

for some m,n. To subdivide this surface patch, simply treat each
row of the control net as the control points of a rational Bézier curve.
Now use the subdivision algorithm for rational curves on each row
of control points to obtain a new set of control points for each row.
Combining all of these new control points yields a new subdivided
control net for the rational surface. For more on rational Bézier and
rational B-spline surfaces, see [12].

4 What is an A-Spline?

An algebraic curve of degree n over a domain D in two-dimensional
space is a set of points (x, y) ∈ D which satisfy a degree-n poly-
nomial equation Gn(x, y) = 0. An algebraic spline, or A-spline, of
degree n is an algebraic curve whose domain D is a triangle in the
plane [6] [10].

Let Q1, Q2, and Q3 be noncollinear points in the two-dimensional
space. Let the triangle 4Q1Q2Q3 be the domain of an A-spline of
degree n defined by Gn(x, y) = 0. A result from mathematics states
that Gn can be replaced by a function Fn over the unit square which
is in Bernstein-Bézier form:

Fn(α1, α2) =
∑

i+j+k=n

bijkB
n
ijk(α1, α2)

=
∑

i+j+k=n

n!

i!j!k!
bijkα

i
1α

j
2(1− α1 − α2)

k = 0

We can think of an A-spline as follows. Consider the surface in
3D formed by the points (x, y,Gn(x, y)) for all (x, y) ∈ 4Q1Q2Q3.
Now consider4Q1Q2Q3 as a subset of three-dimensional space lying
in the xy-plane. The A-spline represented by Gn and 4Q1Q2Q3 is
simply the intersection of the surface and the triangle. So if we
apply a polynomial deformation Gn to the domain triangle in three-
dimensional space and subsequently intersect it with the domain
triangle itself we get an A-spline.

4



However we would like an A-spline to obey certain rules for our
convenience. If we just arbitrarily pick a degree-n polynomial Gn

and a domain triangle, we may run into problems. For instance, Gn

may have no zeros over the triangle, or worse, Gn(x, y) = x2 +y2 +1
has no zeros anywhere. Also we may wish to have a convex A-spline,
meaning that a single connected piece of the curve lies in the domain
triangle, passes through the points Q1 and Q2, and has no inflection
points within the interior of the domain triangle. An additional
common assumption is that the curve is C1-continuous.

5 How Can We Subdivide A-Splines?

A number of techniques have been developed to subdivide A-splines.
Degree 2 and 3 A-splines have fast subdivision algorithms which we
describe below [9] [10]. One general technique to subdivide an A-
spline is to subdivide the graph of the polynomial function Gn in
some neighborhoood of the xy-plane and reduce that to a subdivi-
sion of the A-spline. Another technique is to find a rational param-
eterization for an A-spline [10], if one exists, and then to subdivide
the curve using the method for rational curves [12].

5.1 Subdivision by Zero-Contour Representation

LetD be an arbitrary Bernstein-Bézier triangle and letGn be a poly-
nomial of degree n which defines an A-spline inside D. Consider the
graph of Gn over D. This is a parametric polynomial surface given
by Φ(s, t) = (s, t, Gn(s, t)). We can subdivide polynomial surfaces
and then we can simply pick out the points with zero as the third
coordinate, and we have a rendering of an A-spline. However this
method can be slow since it is indirect. We first subdivide a polyno-
mial surface which is efficient. But then picking out each individual
point with zero or approximately zero in the third coordinate is inef-
ficient, even if we try to subdivide the polynomial surface in a small
neighborhood of the xy-plane.

5.2 Subdivision by Rational Parameterization

Genus is a property of curves and surfaces. The genus of an alge-
braic curve is a number defined in terms of its degree and its num-
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ber of singularities. Algebraic curves of genus zero are rationally
parameterizable. Thus one technique used to subdivide genus-zero
algebraic curves is to simply compute a rational parameterization
of the curve and subdivide it as one would a rational curve. For
degree 2 and 3 curves there are efficient methods for finding a ra-
tional parameterization of an algebraic curve of genus zero and also
for testing whether a curve does in fact have genus zero. Here we
look at techniques for rationally parameterizing genus zero algebraic
curves.

5.2.1 Rational Quadratic Algebraic Curves

Quadratic algebraic curves are also known as conic sections. All
conics have genus zero and are thus rationally parameterizable. We
show how to find a rational parameterization of an arbitrary conic
below. The information below is based on [10].

Given

f(x, y) = ax2 + by2 + cxy + dx+ ey + f = 0, (1)

we derive a rational parameterization of the curve defined by this
implicit equation. If b = 0, then we have

ax2 + cxy + dx+ ey + f = 0

ax2 + dx+ f + (cx+ e)y = 0

y = −ax
2 + dx+ f

cx+ e

So the curve is parameterized as

P (t) =

(
t,−at

2 + dt+ f

ct+ e

)
. (2)

What about when cx + e = 0? Then any point (x, y) where ax2 +
dx+ f = 0 is on the curve.

If a = 0, a similar parameterization follows. If a, b 6= 0, then
select an arbitrary point (x0, y0) on the curve. Let L(t) denote the
line with slope t that passes through (x0, y0).

L(t) = {(x, y) : y − y0 = t(x− x0)} = {(x, y) : y = t(x− x0) + y0}.

Now solve the equation

f(x, t(x− x0) + y0) = 0
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for x. This yields two solutions. One solution is x0 and the other so-
lution is the desired parameterization x(t). Plugging into the equa-
tion for L(t) yields y(t) = t(x(t)− x0)) + y0.

5.2.2 Rational Cubic Algebraic Curves

Cubic algebraic curves are not all rationally parameterizable. How-
ever we present a way to efficiently determine whether a given cubic
algebraic curve has genus zero and if so derive its rational parame-
terization [9] [10].

Given f(x, y) = ax3 + by3 + cx2y+dxy2 + ex2 + fy2 + gxy+hx+
iy + j = 0, we want to find rational parameterization if one exists.
Assume one exists. Substitute:

x = x1 + qy1, y = y1

so that
f(x, y) = g(x1, y1) = L(q)y31 + h(x1, y1)

where
L(q) = aq3 + cq2 + dq + b

and q satisfies L(q) = 0.
Now we just need to parameterize h(x1, y1). First write

h(x1, y1) = h1(x1)y
2
1 + h2(x1)y1 + h3(x1) = 0, (3)

where h1, h2, h3 are degrees 1, 2, 3, respectively. The discriminant
of h with respect to y1 is

h4(x1) = h2(x1)
2 − 4h1(x1)h3(x1).

The curve is rationalizable iff x1 is a multiple root of h4. x1 can be
real or complex, we consider only the real case.

Do transformation y2 ≡ 2h1y1 + h2 so that

4h1h = 4h21y
2
1 + 4h1h2y1 + 4h1h3

= (2h1y1 + h2)
2 − (h22 − 4h1h3)

= y22 − h4.

For any real number r, the Taylor series of h4 about r is

h4(x1) = h4(r) + h′4(r)(x1 − r) + h′′4(r)(x1 − r)2 +

h′′′4 (r)(x1 − r)3/6 + h′′′′4 (r)(x1 − r)4/24
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= h4(r) + h′4(r)(x1 − r) + q2(x1)(x1 − r)2, (4)

where q2 is a polynomial of degree 2:

q2(x1) = h′′4(r)/2 + h′′′4 (r)(x1 − r)/6 + h′′′′4 (r)(x1 − r)2/24.

Now define y3 ≡ y2/(x1 − r) into equation 4 together with equa-
tion 3:

4h1h = y21 − h4(x1)
= (y23 − q2(x1))(x1 − r)2 + h′4(r)(x1 − r) + h4(r)

≡ k(x1, y3).

Choose r to be a multiple root of h4 so that h4(r) = h′4(r) = 0.
Then we have

k(x1, y3) = (y23 − q2(x1))(x1 − r)2.
Let

C(x1, y3) ≡ y23 − q2(x1).
C is an implicit quadratic, which can be parameterized by the meth-
ods of the previous section so that x1(t) and y3(t) are rational.

Now apply all transformations in reverse. The parameterization
for C(x1, y3) = 0 yields one for k(x1, y3) = 0. Since y2 = y3(x1 − r)
and y1 = (y2− h2)/2h1, we can parameterize h(x1, y1) = 0 and thus
g(x1, y1) = 0. Now x(t) = x1(t)+qy1(t) and y(t) = y1(t), so we have
the desired parameterization for g(x1(t), y1(t)) = f(x(t), y(t)) = 0.

5.3 Subdividing Convex A-Splines

In general an A-spline is given by its implicit equation Gn(x, y) =
0 over a domain D. We showed earlier that this is equivalent to
an equation Fn(α1, α2) = 0 where the domain of Fn is the unit
square. If the A-spline has genus zero, we wish to find a rational
parameterization

P (t) =

∑n
i=0wiPiB

n
i (t)∑n

i=0wiBn
i (t)

, (5)

where Pi ∈ R2, wi ∈ R, and Bn
i (t) are the used earlier to define

rational Bézier curves. We can modify the weights so that, without
of loss of generality, w0 = wn = 1 [6], [12]. We now explore rational
parameterization of convex C1-continuous quadratic and cubic A-
splines. The Bernstein-Bézier coefficients of a C1 A-spline must
satisfy bn00 = b0n0 = b(n−1)01 = b0(n−1)1 = 0 [10].
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5.3.1 Rational Parameterization of Quadratic A-Splines

A rational parameterization of a convex C1 quadratic A-spline would
have the form

P (t) =
Q0B

2
0(t) + w1Q2B

2
1(t) +Q1B

2
2(t)

B2
0(t) + w1B2

1(t) +B2
2(t)

, (6)

if the A-spline interpolates Q0 and Q1. As mentioned in [10], if

w1 =

√
− b110

2b002
≥ 0,

then a quadratic A-spline defined as aboveis rationally parameteriz-
able. Equation 6 is said to represent a 2/2 rational parameterization
of a quadratic A-spline.

5.3.2 Rational Parameterization of Cubic A-Splines

Suppose F3(α1, α2) = 0 represents a C1 convex cubic A-spline in the
domain triangle (Q0, Q1, Q2). There is no 2/2 rational parameteri-
zation for a nondegenerate cubic A-spline, but there is a method to
derive a 3/3 rational parameterization which has the form

P (t) =
P0B

3
0(t) + w1P1B

3
1(t) + w2P2B

3
2(t) + P3B

3
3(t)

B3
0(t) + w1B3

1(t) + w2B3
2(t) +B3

3(t)
, (7)

where

P0 ≡ Q0

P1 ≡ (1− α)Q0 + αQ2

P2 ≡ (1− β)Q1 + βQ2

P3 ≡ Q1,

and α, β, w1, and w2 are parameters to be determined [10].

5.4 Subdividing Nonconvex A-Splines

A topic which deserves further study is the subdivision of nonconvex
A-splines. These are A-splines which have a sequence of inflection
points. To subdivide such an A-spline, we simply break it up into a
sequence of A-splines where each new domain triangle contains the
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part of the A-spline between an inflection point and an endpoint
or another inflection point. At each inflection point, a side of the
domain triangle of one new A-spline and a side of the next A-spline’s
domain triangle form a tangent line segment to the A-spline. There
is a known efficient method for doing this.

The next step is to find a clever fast way to subdivide each of
the individual A-splines that were created in the process above. All
of these A-splines are now convex. We desire to find a fast algo-
rithm for computing a tangent to a convex A-spline such that the
domain triangle of that A-spline can be subdivided into two new
domain triangles. Then this process can be repeated, individually
for each A-spline, to yield a fast subdivision algorithm for the entire
nonconvex A-spline. Ideas for performing this are presented in [14].

5.5 Searching for New Subdivision Algorithms

Let us look back at Section 3. What is subdivision? Subdivision
in a general sense is the concept of starting with an initial set A0

and a function S such that when S is repeatedly applied to A0, a
sequence forms which converges to a desired target set A. Ideally
we would like this process to converge quickly to A, i.e., for small
N , we would like AN as defined in Section 3 to be close enough to
A so that further iteration is impractical or unnecessary due to the
limit of the pixel width.

The paper [13] introduces a slightly unconventional way of look-
ing at the subdivision of polynomial curves. Instead of describing
the subdivision as a sequence of simple linear combinations, the pa-
per describes the process as the successive combined iteration of
two affine maps (which comprise the subdivision function S) ap-
plied to any initial compact set A0. Looking into different kinds of
maps other than affine ones, we may be able to describe subdivision
processes for more complex curves, including algebraic curves.

6 What is an A-Patch and How Can We Hope
to Subdivide A-Patches?

An algebraic surface of degree n is the set of points in three-dimensional
space satisfying Gn(x, y, z) = 0 where Gn is a polynomial function of
degree n. An algebraic surface defined over a compact domain is an
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algebraic surface patch, or A-patch. Let Q1, Q2, Q3, Q4 be noncopla-
nar points in three-dimensional space. These points are vertices of
a tetrahedron V . Now by the Bernstein-Bézier representation [5],
since the vertices of V are affinely independent, for each p ∈ V ,
there is a unique point (α1, α2, α3) in the unit cube such that

p = α1Q1 + α2Q2 + α3Q3 + (1− α1 − α2 − α3)Q4.

Furthermore, there exist real numbers, called control points, bijkl
such that

0 = Gn(x, y, z) = Fn(α1, α2, α3)

=
∑

i+j+k+l=n

bijklBijkl(α1, α2, α3),

where

Bijkl(α1, α2, α3) =
n!

i!j!k!l!
bijklα

i
1α

j
2α

k
3(1− α1 − α2 − α3)

l.

An A-patch does not have to be defined inside a tetrahedron. For
each of the xy-, yz-, and xz-planes, we can have either a tensor
(square) or barycentric (triangular) domain, conventionally. This
yields possibilities for domains to be shapes such as cubes and pyra-
mids, as well as tetrahedra. The above information and more details
are explained in [7].

Subdivision techniques exist for A-patches via rational parame-
terization in two variables. Methods for parameterizing parameter-
izable prism and tetrahedral patches, as well as ways of approxi-
mating A-patches with triangular rational surfaces, are explained in
[10].

7 Conclusion

Efficient subdivision algorithms for curves and surfaces describable
by rational functions and parameterizations are generally known.
But once one crosses into the world of implicit algebraic curves and
surfaces, less is known about fast subdivision for these objects. How-
ever, with what is known about rational parameterization of certain
implicit curves and surfaces, plus other innovative ideas on converg-
ing sequences of geometric objects, there is hope for finding more
efficient and perhaps more direct methods for subdividing implicit
curves and surfaces.
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